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1 Complex numbers in rectangular form

The path through your High-School mathematics education has been paved, quite
literally, with scores of unspeakable lies and simplifications. One of the more grievous
of these is the seemingly-legitimate notion that an expression such as \/—4 cannot be
evaluated. In fact, no. As mathematics progressed, this unfortunate theoretical cul-
de-sac caused increasing - and understandable- levels of anziety in certain circles.
Things were eventually, though not necessarily painlessly - resolved, which leads us
to our current predicament of preparing for a ghastly external examination.

Manipulation of surds

We begin these notes with a idea that is, in all likelihood, insultingly elementary
to you (bear with us, however). The idea is that there are some integers whose
square root can be directly evaluated. One example might be 1/25, which, clearly,
can be expressed as the number 5. Such numbers are called perfect squares. While
working with perfect squares is obviously a pleasant thing indeed, they’re an endan-
gered species. There are significantly more numbers whose square root is not even
remotely close to another integer. We call these things surds.

So an example of a surd might be
V2 =1414...

We can think of expressions like V2 and /3 as irrational numbers, because they
produce decimals that run to an infinite number of places. Even our calculators find
this fact overwhelming, and they cut them off after only a dozen decimal places or
so. Infinity is a difficult thing to swallow, of course. Interestingly, ancient Greek
mathematicians were so suspicious of this notion that it was not allowed to be pub-
licly mentioned. Irrational, indeed!

Thankfully, we live in a rather more enlightened era, and we very much can and do
discuss surds. One frequent goal we have when working with surds is to simplify
them. This process generally involves using a key fact, namely that:

VaxVb=+vaxb

We’ll usually be using this fact in the reverse order: we’ll take an integer, and think
of it as the product of two other integers, a and b. We’ll then compute their square
roots individually. The process is significantly easier than it might sound. Let’s
take a fairly simple surd as an introductory example:

V200

The expression /200 is a surd because it cannot be evaluated as an integer. Pre-
dictably but a tad depressingly, entering it into your calculator won’t alleviate the



issue. V200 is also an irrational number.

We can begin simplifying this by thinking of 200 as the product of 100 and 2.
Then we apply our key fact:

V200 = /100 x 2
=100 x V2
=10v2

Your calculator might have been useless where computing v/200 was concerned, but
you can certainly use it to confirm that the expressions v/200 and 10v/2 do in fact,
produce the same value. And you should also note, of course, that the answer we
produced wasn’t necessarily the only way to simplify the surd v/200. We could have
also used this path:

V200

v4 x 50
V4 x /50
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These two results are just as valid as one another (and give the same decimal if we
were to insert them into a calculator). Sometimes, the occasion calls for a different
approach. In this next example, we wish to take the product of two surds and
simplify it. Thankfully, the steps involved are basically the same. For instance,
suppose we're given the expression

V6 x V12

and we were asked to simplify it. We would do so by producing a single surd, and
then looking for factors of it that were also perfect squares. For example, in this
particular instance we find that

V6 x V12 =72
= /36 x V2
= 6v2

Again, a calculator is useful to verifying that we’ve performed these steps correctly.
Nonetheless, our thrilling study of surds waits for no-one and nothing. It’s common
to come across a number that contains both an integer and a surd. This is quite a
strange sight for us, who are generally privileged to mostly encounter neat integers
and so forth. We’re referring to expressions along the lines of this:

2+5



We might refer to this expression as a compound surd, on account of its being made
of two parts. It’s easy to perform the basic operations - addition, subtraction, and
so on - on these so-called compound surds. On the pleasant occasions where the
square roots are identical, surds can be added algebraically:

ay/c+bv/e = (a+b)e
Which makes the following expression fairly convenient to evaluate:
(24 V5) — (4 — 2V/5)

Here the approach would be to subtract the integer portions of each expression, and
then to subtract the surd portions of each expression. Using this method, we find
that

2+V5)—(4—-2vV5) =(2-5)+(1+2V5

=-2+3V5
Multiplication of compound surds isn’t overly difficult either. In fact, it works using

the same principles you know from expansion of quadratic roots that are probably
infinitely tedious to you by now. Therefore we find that

(24V5)(3—-2V5) =6 —4V5 +3V5 — (2 x 5)
=6—v5-10
=—4-5
So we simply follow the usual expansion process, and finish it off by collecting up

the like terms. This example was especially tidy because the final term involved
multiplying v/5 by another v/5 term, and this produced the whole number 5.

If multiplication of compound surds is mostly easy then, sadly, the same cannot
be said for their division. For instance, how would we simplify this thing?

1
1++3

In fact, this type of problem requires a special trick. It’s called the difference of two
squares, and may be recalled from dreary periods spent in your drab maths classes.
The difference of two squares tells us that

(a+ Vb)(a—Vb) =a® — b

This can be applied to our pressing problem at hand in a neat way. What we need
is to introduce a new expression. We will multiply the existing fraction by this new
expression, which is:

1-V3

1-+/3

4




We're entitled to do so because this expression is simply equal to 1. This is because
its numerator and denominator are identical.

At this point, it’s useful to introduce an important definition. If a surd is given
by a+ Vb, then we’ll say that the surd a — /b is called its conjugate. We find that,
when we use the conjugate in a division problem, something interesting happens:

11 1-/3
V3 1+v3 1-3
1-V3

T 1-3
1-3
-2
-1 \/§

2+2

So, by setting up a slightly different (but essentially idetical) equation using the
conjugate surd of the denominator, we managed, miraculously, to produce an answer
that contained no surds on the denominator. This same method goes for more
complicated divisions of surds, such as

4422
1-5
Our first step here is always to find a conjugate surd. The conjugate we select

must always belong to the surd on the denominator. So we select 1 4+ /5 as our
much-needed conjugate, and we follow the usual steps:

4+2V2 _4+42V2 1442
1-V2  1-v2 142

_A+4V2+2V2+4
B 1-2

_ 8+6vV2
==

= —8—-6V2

And, within seconds, we reduce a nightmarish expression into a tediously common
one.

Sample problems

1. Simplify the following surds. There may be several valid solutions in some
cases.



(a)
V125

(b)
V6 x /24

2. Simplify the following expressions:

(a)
(=4 +6V7) — (12 — 2V7)

(b)
V60 + V135

(Hint: you will need to simplify each surd into a common form first)

3. Simplify these expressions using the idea of the conjugate of a surd:

(a)
1

2 -7
(b)

2+ 22

142

Solutions

1. (a) We observe that
V125

V25 x5
V25 x V5
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(b) We form a single surd, and then simplify as per usual:

V6 x V24 = /144
=136 x4
= 6v4

2. (a) The method here is to collect the “like” terms, which are the integers and
common surds, so:

(—4+6V7) — (12 = 2V7) = (-4 — 12) + (6 + 2)V7
= —16 +8V7



(b) We solve this problem by observing that
60 =4 x 15

and, similarly, that
135 =9 x 15

hence we can find common surds easily:

V60 + V135 =4 x 15 ++/9 x 2

=2v15+3V15
=5v15

3. (a) We will need to apply the idea of a surd “conjugate”. Here, the conjugate
of the denominator is 2 + v/7. So we compute as usual:

11 2+ V7
27 2-v7 247
2 +/7
47

(b) Once again, we need to use the conjugate of the denominator. Here,
that’s 1 — /2. So we find that

242V2 2+42V2  1-V2
14v2  1+v2 11—+
24
)
-2
T 1
=2

which is a surprisingly pleasant result.

Introduction 7 and complex numbers

Suppose we are leafing through a maths textbook, and we encounter a quadratic
equation. This is a plausible scenario, though not necessarily a pleasant one. All
quadratic equations are essentially just polynomials of degree 2. In one way or
another, they all take on this generic form:

p(z) = az® 4 bz + ¢



for a, b, ¢ € R, and a # 0. Which really just means that, so long as a is a real,
non-zero number, the equation p(z) will represent a quadratic. The solutions of a
quadratic equation are the values of x such that p(z) = 0. We find solutions to
a quadratic equation by factorising, completing the square, or using the quadratic
formula. You’ll fondly recall that these methods were the stuff of your Level One
and Two mathematics exams. In particular, the quadratic formula, is given by

—b+vb? —4ac
2a

The expression inside the square root of the quadratic formula, b*> — 4ac, is known
as the discriminant of the equation, and it has a delta symbol (A). The we can
easily compute the discriminant when we know the values of coefficients a, b and c.
For example, in the equation

plz)=2% -z -2
we can quickly see that a =1, b = —1 and ¢ = —2, and so the discriminant is given

by

b? — dac = (—1)% — 4(1)(-2)
=9

Mathematicians (and, we suppose, examiners) care about the discriminant because
it gives us important information about the nature of the solutions of a quadratic.
Because, in this particular instance, A was took on a positive value, we know that
this equation has two real solutions. In other words, there are two placed where the
parabola it represents will cross the x-axis. We can also observe this by drawing
p(z) = 22 — 2 — 2, which is not taxing:



Figure 1: A graph of y = 2% — 2z — 2

The discriminant, b> — 4ac, may take on three different kinds of values: namely,
it may be positive (A > 0), zero (A = 0) or negative (A < 0). The types of solutions
to the quadratic equation p(z) will depend on these values of the discriminant:

e If A > 0 then p(x) has two real solutions
e If A =0 then p(x) has one real solution
e If A <0 then p(x) has no real solutions

The first two cases give us plausible numbers as our solutions, even if they’re some-
times a little messy. The third case, however, is more difficult to work with. This
represents all those quadratic equations whose parabolas don’t actually make con-
tact with the x-axis at all. It’s not difficult for us to imagine a parabola where this
is the case. A classic example would be the equation

p(z) =2 +1

whose graph is drawn below.



Figure 2: The graph of y = 22 4+ 1

Clearly, this parabola does not have any x-intercepts to speak of. But, of course,
sketches are often unreliable, not to mention poorly drawn. No matter, though,
since we can confirm this idea by examining the discriminant value, given that
a=1,b=0and c=1:

b? — dac = (1)* — 4(1)(1)
=-3
Which confirms that there are no real solutions that belong to this equation. Things

are looking rather bleak, then.

It’s frustrating that a simple equation such as this one seems to be unsolvable.
Mathematicians of 16th century felt similarly. They resolved the issue in a creative
way, as we shall see. Ordinarily, we solve quadratics by setting y = 0. So here we
would observe that

22 +1=0

which implies that we need an x such that
2 =-1

A real number, positive or negative, will always give another positive, real number
when it’s squared. So in order to solve this equation we need to define a new

10



imaginary number, which we call 4. This number is defined such that
i?=—1=i=+/-1

Now that we have this new imaginary unit, the equation that was so vexing to us
before becomes miraculously, easily solvable. We can see that if

22 =-1
then the solutions to the equation will be given by

r=v-1
=+

It’s crucial to remember that a plus or minus sign must always be attached to a
square root, even for instances of these imaginary numbers. Now, we should be able
to factorise the original quadratic easily!

p(z) =2+ 1= px) = (x +i)(x — 1)

We can use regular techniques for expansion of brackets to prove that these two
expressions are equivalent. For instance, we see that

(z+14)(x —1i) = 2° — iz + iz — i°
— 22
—a® ()
=22 +1

and so we’ve shown that we must be correct. This, you may note, is some pretty
heady stuff. In a few short paragraphs we’ve essentially made it possible to solve
and entire category of previously-unsolvable equations. While it’s easy for us now
to appreciate the usefulness of the imaginary unit ¢, the mathematical community
saw them as little more than amusing playthings for several centuries. Today, to
a perhaps distressing extent, fields like electrical engineering rely enormously on
imaginary numbers.

It eventually turns out that, whenever the number beneath a square root is a neg-
ative, it becomes useful to simplify the expression using ¢ notation. For instance,
suppose we're given the expression

V=T

and asked to simplify it. This really works similarly to the simplification surds. We
need to first observe first that

V= IxT

11



After this crucial step things become simpler. Now we simply recall that /—1 = 4,
and we can see that

Vol xT7=+v—-1xV7
=iV7

Any number that is directly attached to an ¢ is said to be imaginary. Real numbers
and imaginary numbers are frequently found quite close to one another. We often
find, for instance, that the solutions to quadratic equations contain both a real and
an imaginary component. Suppose that we gave you the following, average-looking
quadratic:

2?4+ 20+5=0

and demanded you solve it. It turns out that, for this equation, A = —16, and
hence the solutions must contain imaginary numbers. Is that all that they’ll contain,
though? We find the solutions, except in the simplest instances, using the quadratic
formula. Let’s apply it now:

—b+ Vb2 —4dac —-2++/-16
2a 4
-2+ 43

4
1
= 4
2

We can now place these solutions inside sets of brackets, which will allow us to
produce the following factorised form of the equation:

p(x) = 2? + 22+ 5= p(r) = (x_ <_;+Z>> <x_ <_;_Z>>

We could easily get rid of the inner brackets if we so desired:

o= s+ ) (e 141

So here, as promised, we found that the solution to the equation required both a
real and imaginary element. We call these numbers complex numbers, which, as you
no doubt can guess, will be discussed endlessly for most of the rest of the guide.

Sample problems

1. Express the following in terms of i:

(a)

12



(b)
2 — /16

()
V=27

(Hint: you should end up with an answer of the form aiv/b)

2. Solve the following equations:
2’ +4=0
?+r+T7=0

(z* —81)

(Hint: first try and express this equation of the form (22 + a)(z? — a))

Solutions

1. (a) Since
V—2=+v-1x -2
we get a solution of 2.

(b) We can leave the real part of this complex number, 2, as it is. We perform
the usual simplification on the imaginary part:

V=16 =+v/—-1x 16
= 4

And hence we see that

2—vV-16=>2—-4

(c) We begin by forming three factors of —27 in the following way:

V=2T=vV-1x9x3
Now notice that the first two of these factors can be simplified easily, so:

Vo1x9x3=vV-1xvV9IxV3
= 3iV3

13



2.

(a)

We rearrange the equation and find the values of x such that
2 =—4
Hence we see that

xTr =

b

=32

We apply the quadratic formula on this equation; first we observe that
a=1,b=1and ¢ ="7. So, the solutions are given by

—b+ Vb2 —dac  —14+/-27
2a N 2
—1+3iv3

2
1

:_7i3\/§
27 2

7

We need to first use the idea of the difference of two squares. So we

observe that
2t =81 = (22 +9)(z? - 9)

Now we have two sets of quadratics. One of these we can also use the
difference of two squares idea on:

(22 +9)(2? — 9) = (2® + 9)(z + 3)(x — 3)

And so we’ve already found two solutions (which are real) to the equation.
The remaining two solutions come from the factorisation of 22 +9, which
gives us (z + 3i)(x — 37). So we finally can get all four solutions:

gt — 81 = (x +3i)(x — 3i)(z + 3)(z — 3)

In other words, the four solutions are 3, —3, 37, —31.

Operations of complex numbers

To this point, we’re roughly acquainted with a few key facts about these complex
numbers. One is that a complex number is made up of both a real and an imaginary
component. A second is that a complex number will involve the imaginary unit, 7,
defined so that

i =-1

14



These ideas will be developed in this section. First, we're ready to look at a more
general form of a complex number. This is called the rectangular form. We normally
use the letter z to denote a complex number. In rectangular form each z is defined
so that

z=a+bi

for a, b € R. This fits neatly with the ideas we’ve developed about complex numbers’
real and imaginary components.You should see that both a and b here are simply
real numbers, and it is only the presence of ¢ that creates an imaginary number here.
By assigning real numbers to these unknowns a and b we create an actual complex
number. So, for instance, a relatively simple complex number might be

z=2+3

We often wish to discern between the real and the imaginary portions of a complex
number. We refer to the real portion as Re(z), and the imaginary portion as Im/(z).
So in our case, we would say that

Re(z) =2 and similarly, that Im(z) =3

Another important fact is that a complex number need not have a real part, or an
imaginary part. For instance, consider z = —44. In this instance, we can see that

Re(z) =0 and that Im(z) = —4

and so we might call this z “purely imaginary”, since it contained only an imaginary
component. All the same, we would still refer to it as a complex number. To that
end, even the imaginary unit ¢ itself can be though of as an complex number! In
that instance, when z = i, we would say that

Re(z) =0 and that Im(z) =1

Likewise, a purely real number such as 52 is regardless classified as complex. So,
as it turns out, all the numbers we’ve previously experienced during our lives have
been complex numbers. Try not to feel to lied to, though.

We add and subtract complex numbers by adding or subtracting their real and
imaginary parts separately. This is similar to addition and subtraction of surds
from the previous section. For example, suppose we define two complex numbers
such that z; = 4 — ¢ and that zo = 3 4 2¢. Then how might we go about finding
21 + 22 and also z; — zo. Well, we just need to group the real and imaginary parts
together. So:

z1+220=(4—1)+ (3+2i)
=4+3)+(-1+2)
=741

15



That wasn’t a painful process, then, and nor is determining the difference of these
two complex numbers:

21— 22 = (4—1)—(3-}-22)
=4-3)+(-1-2)i
=1-3
As ever, it’s all too easy to lose or gain minus signs when the arithmetic starts to

get complicated. Brackets are therefore extremely useful when we're forced to deal
with complex arithmetic.

Multiplication of complex numbers, happily, also happens to be extremely simi-
lar to the multiplication of surds we saw a few sections ago. All we need to do is
remember that 2 = —1, and the rest really takes care of itself. For instance, observe
that

21 X 29 = (4 —1)(3 4 29)
=12 + 8 — 3i — 2i°
=12+8 —3i+2
=144 5
Finally, division of complex numbers is very similar to division of surds. We've
already seen how, in those instances, it was necessary to use the conjugate of a

surd. So let’s take a look at the related idea of the conjugate of a complex number.
Suppose a complex number z is defined so that

z=a+0bi
Then we would define the conjugate of z, Z, so that
Z=a—b

Now let’s look at a general case before we actually do an example. Suppose we're
given the following division to solve:

a+bi

c+ di

We examine the denominator, and deduce that its conjugate will be ¢ — di. Then
we re-express the problem like this:

a+ bi N a+ bi " c—di

c+di c+di c—di

These two expressions are equivalent, because the new fraction is simply equal to
1. This method is useful because it ensures that the thing we end up with has no

16



complex numbers on the denominator, which would make it a real pain to work
with. So let’s look at how we solve z1 + z9. If 29 = 3+ 2¢ then its conjugate is given
by z3 = 2 — 2i. Then we change the problem so that

4—1 4 —q 3—21
- = - X -
3+ 2 3+2t 3—21

Then we just need to go through the expansions, which are tedious but thankfully
not too challenging:

4—7 3—2i 12—8i— 3i+ 2i>

- X . = - - -
34+2i° 3—2¢ 9 — 67 + 67 — 442

10— 11
13

100 11
13 13

This idea of complex division is extremely important, and will appear in several
other places during the guide (and, in all likelihood, in your exams), so it’s a good
idea to practice it now. The complex conjugate will always make an appearance
during these instances.

Here is another interesting idea about complex numbers. We originally defined
the imaginary unit ¢ such that

2

Y= -1

so this is one fundamental fact we know for sure about i. Given this, how could we
determine the value of i3, for instance? One useful rule we know is that

xa+b — (ma)(xb)

This was taught at Level One and Two. Like other algebraic rules, it transitions
naturally to complex numbers. Similarly, we see that

# = (%))
= (-1)()

=—i

So if computing i was easy, could we do the same for i*? The answer is yes. As
we’ll see, this case is particularly interesting:

it = (i*)(i%)

17



Look at that. It’s not hard to continue with this process, and see that a theme will
quickly emerge. For instance, given the result we just saw, we can observe that 4°
will simply be equal to ¢ once more.

In fact, when a raise the imaginary unit i to the power of some integer n, then
the result will always be equal to one of four different things. Let’s suppose that we
can express the number n so that n = 4a + b, where a and b are whole numbers,
and a takes on its maximum possible value. Then " will be equal to

e 1ifb=0
o ifb=1
o -1ifb=2
o —ifb=3

We can use this rule to compute frankly hideous expressions, such as

2-43

This looks quite daunting to simplify. In fact it is laughably easy. We first need
find a and b so that 43 = 4a + b, recalling that we must select the highest integer
value of a that we can. The best we can do in this instance is:

43 = 4(10) + 3

so we see that a = 10 and b = 3. Now we can re-express the original problem:

2‘43 — (Z'4>1OZ'3

The key observation to make at this point is that i* = 1. From here things progress
swiftly:
(2'4)10 — 110 — 1

The problem now becomes a great deal more straightforward:

i43 — (1)10(i3)
=3

= —1

This causes of this cyclical nature of the imaginary unit ¢ will be examined more
thoroughly in Section Two shortly.

18



Sample problems

1. For the following complex numbers, determine Re(z) and Im(z):

z=16—27

z=1.7

2= (2 4i)— (1+19)

2. For u =1+ 57 and v = 2 — 27 determine the values of:

uv

]

<

3. (a) Simplify 22
(b) Make a general statement about " given that n = 4a + 1 for some a,
beZ

Solutions
1. (a) Re(z) =16, Im(z) =—2
(b) Re(z) =1.7,Im(z) =0

(c) We first need to compute the addition and form a single complex number,
so:

2—-4i)—(1+i)=02-1)+(—4—-1)
=1-5¢
And hence we see that Re(z) =1 and Im(z) = —5
2. (a) We use the normal method of bracket expansion, so that
wv = (14 50)(2 — 2i)

=2 — 2+ 10i — 10i°
=2+8i+10

=12+ 8

19



(b) T denotes the conjugate of the complex number v = 2 — 2i which will
clearly be v =2 + 2i

(c) We solve this problem using the conjugate of v. So we see that

u  1+5

v 2—92

and that, according to the rules of complex number division, we can
re-express the problem so that

1452 1+5: 242
g - X -
2— 21 2—21 242

Now the problem is solvable:

1+5i 242 2+ 2i+10i + 10
2—-2 " 2+2 4 — 442
—8+12i

8

3

3. (a) We observe that 22 = 4(5) + 2, so in this case we see that b = 2. This
tells us we can reduce i?2 to —1.

(b) Using the facts we saw in this section, for n = 4a + 1, it is always true
that i” = 4. This is a sufficient solution to the problem!

Algebra of complex numbers in rectangular form

A good deal of High School mathematics, for better of worse, is devoted to solving
algebraic equations. If we’re lucky, these are (a) linear, and (b) contain only a single
unknown. So here is an example of such an equation:

r+2=3x—4

Taking a cursory glance at this short piece of algebra, it’s immediately obvious that
our job is to solve for x. In this example, however, it was implied that the value of x
would be some real number. In other, seedier scenarios, though, an unknown z could
plausibly be equal to a compler number. These are the equations we investigate in
this section.

It is an important fact that two complex numbers are equal if and only if both
their real and their imaginary portions also happen to be equal. This idea is quite
reasonable to digest. Another way of saying this is that if

a+bi=c+di

20



then it absolutely must also be true that a = ¢ and, similarly, that b = d. We
can use this important idea in solving simple equations in which the unknown is a
complex number. For example, suppose we know that

x4+ 2yt =1041

The approach here is probably not obvious, and that’s because we’ve never come
across an equation of this form. The important thing is to appreciate that what
we’re seeing here is actually two seemingly-different complex numbers, one on the
left of the brackets, and one on the right. Because they’re equal, however, the real
parts must be equivalent, and the imaginary parts must also be equivalent. This
realisation helps a great deal. So we can say that

=10

and also that
2y =1

Well, immediately we’ve solved for one of these variables, and found that x = 10.
We now just need to solve the second equation for gy, which is particularly easy:

1
2=1=y=—
Y Y 9
So that wasn’t so bad after all. In fact, it wasn’t overly different to a rudimentary
piece of algebra. Similar questions can be slightly more challenging, though. For
instance, here is a second example of a linear equation of complex numbers:

Suppose that
z2(14+4i)=5

where z is a complex number.

There is a similar approach to most of these complex algebra problems and it is this:
whenever we encounter an unknown z in an equation, we almost always should
substitute z for a + bi, the rectangular form of a complex number. So we define
z = a + bi and re-write the problem in the new form of:

(a+bi)(1+4i) =5

Now we can see that the question is actually asking us to determine the values of a
and b, both real numbers. There seem to be several approaches to the problem at
this point. One option might be to expand the left hand side, and then equate two
complex numbers, like we did in the previous question. The most obvious method,
though, is to algebraically divide both sides by the expression 1 + 4¢ so that we can
isolate the unknowns. This also happens to be the easiest:

bi =
a0 =

21



This ought to be ringing some bells for you. That’s because we’ve actually seen
questions extremely similar to this on in the past. We need to use the conjugate of
1+ 44, which is just 1 — 4¢, and we can then say that

5 " 1—4
1+40 1—44
Now we only need to wade through the algebra, like we’re used to doing:

) 1 -4 5 —20¢

X =
1+4: 1—4 1 — 1642

a+ bi =

5 —20¢

17

5 20,

=TI
So, we’ve shown that

a+bi= LR @z
17 17

and so, equating the real and imaginary parts of these two complex numbers we see
that a = % and that b = —%. This completes the solution, which actually wasn’t

too bad in the end.

We'll conclude this section with a problem that asks you to show a property of
complex numbers. This is similar to a proof. The idea here is that we use the
most general types of equation we can to show that a property holds for any specific
examples that we might want to later choose. What this really means, though, is
defining any complex numbers in a generic rectangular form z = a + bi as per the
previous problem.

The problem we’ll be looking at is this:
Given two complex numbers v and v, show that u +v=u+7v

We shouldn’t have any problems starting out. We just need to define u and v in the
general, rectangular form of complex numbers. This means writing them in forms
that look like u = a + bt and v = ¢+ di. Of course, we chose these letters simply
because they were convenient, but using x’s and y’s is allowed, too. From this, it
clearly follows that w = a — bi and similarly, that 7 = ¢ — di. Now we're in good
shape to begin a solution to the problem.

With a show question, our goal is to begin with the expression on the left hand
side (LHS) and play around with it so that it eventually turns into the expression
on the right hand side (RHS). It’s not overly glamorous, in reality. We we begin
with an expression for u + v, which is given by

u+v=(a+bi)+ (c+di)
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Now we’ll group the real and imaginary parts of this sum together, like we're used
to doing:

(a+bi)+ (c+di)=(a+c)+ (b+d)i

Now we have what we can think of as a single complex number. We find its conjugate
using the same method we're used to:

(a+c)+(b+di=(a+c)—(b+d)i

We're getting close to the finish. Let’s put this complex number back into two
complex numbers, similar to the original values we had for « and v:

(a+c)—(b+d)i=a+c—bi—di
= (a — bi) + (¢ — di)
=a+bi+c+di

This problem was probably at Excellence level, but don’t pay the meaningless
NCEA-speak any mind. As we just saw, the approach didn’t contain any par-
ticularly clever tricks, and the working really sorted itself out.

Sample problems

1. Solve the following equations for a complex number z in the form z = x 4 y:

(a)
T4y +2—i=8— 3

(b)
2(2+1i) =4+ 3

2. For two complex numbers, v and v, show that

UXV=uUXTV

Solutions

1. (a) We are essentially just rearranging the expressions so that on the left
hand side we have only the expression x + iy. So we see that

r+iy=8—3t—2+1
=6—2¢
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(b) We begin by letting z = = + iy. The algebra now looks like this:
(x+iy)(2+1) =4+ 3i

We can now divide both sides by 2 + i in order to solve for x + iy as

desired, so:
iy 4+ 3
T4y =
Y=o
443 2—1
= - X -
241 2—1
8 —4i+46i— 3
B 4 — 42
11 +2
5
11+2,
= — 4 =1
5 5

So, aside from the maybe not-so-obvious first step, we were really just
going through the motions of complex number division with that one!

. This problem works in a similar way to the example from the notes. We begin
by defining the two complex numbers in rectangular form, so that u = a + bi
and v = ¢+ di. Let’s first observe that @ = a — bi and that ¥ = ¢ — di so that

And so we can re express this as
u X U= (ac—bd) — (ad + bc)i (1)

Now we begin with the algebra. We see that

uxXv=(a+bi)(c+ di)
= ac + adi + bet — bd
= (ac — bd) + (ad + be)i

Now that this is in the form of a complex number, we can easily compute the
conjugate:

(ac — bd) + (ad + be)i = (ac — bd) — (ad + be)i

=uXv

by the expression we derived in (1). This completes the problem.
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With that we conclude Section One of this Guide. The key skills we
dearly hope you’ve mastered are:

e Manipulation of surds: reduction of square roots of larger integers, addition
and multiplication of surds, conjugate surds and their use in division.

e ¢ and complex numbers: the issue of a negative discriminant, using ¢ to solve
elementary quadratic equations, reducing negative square roots using 7.

e Operations on complex numbers in rectangular form: real and imaginary com-
ponents of a complex number, basic operations of complex numbers, use of the
complex conjugate in division, reducing higher powers of i using its cyclical
nature.

e Solving equations of complex numbers: equation real and imaginary compo-
nents of complex numbers to solve equations, using the definition of a rectan-
gular complex number to establish properties
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2 Complex numbers in polar form

One of the more crucial facts from our previous discussions of complex numbers is
that they contain both a real and an imaginary component. This is quite similar
to how a point defined on the Cartesian plane - (2, -3) for instance - contains an
x and a y component. We use this similarity to essentially “map” each complex
number onto a set of axes. This is called an Argand diagram. Argand diagrams lead
naturally to an alternative form of complex numbers known as polar form.

Argand diagrams
Let’s begin by considering the complex number z, defined in rectangular form as
z=a+bi

It will be clear that Re(z) = a and that Im(z) = b. Using this information, we can
plot z on a set of axes, where the horizontal axis specifies Re(z) and the vertical
axis specifies Im(z). So, we're really mapping the point (Re(z),]m(z)) onto our
new complex plane. Clearly, this would be identical to placing the point (a,b) on
regular x — y axes.

Thus, on an Argand diagram, where a and b are both positive numbers, the complex
number z = a + bi would appear like this:

Im A

Figure 3: z = a + bi plotted on an argand diagram
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So there’s nothing really too difficult to grasp with these Argand diagrams -
they’re little more, at this stage, than a tool for visualising complex numbers. Let’s
replace the placeholders a and b with specific values. Suppose we now define a
complex number as

z2=2+3%

Then we can represent z on an Argand diagram like so:

Im A

Figure 4: z = 2+ 3¢ on an Argand diagram

Argand diagrams can also be used to add and subtract complex numbers without
resorting to any actual arithmetic. Before we do this, it’s a good idea to imagine
that there’s always an arrow running from the origin to the complex number. This
is allows us to think of complex numbers as distinct vectors. Here, we’ve plotted
two complex numbers, « and v, on an Argand diagram.
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Im A

Figure 5: u, v and u + v plotted in the complex plane

We’ve also managed to find the position of their sum, v+ v, even without know-
ing the actual values of the these complex numbers. We did this by adding the
vectors together: placing the beginning of one at the tip of another, and then draw-
ing a final vector from the origin to this new point. You might have done this in
physics classes in the past.

If we can add two complex numbers geometrically on an Argand diagram, then

can we subtract them as well? Happily, the answer is yes. Here is the geometric
position of u — v:
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Im A

Figure 6: u, v and u — v, plotted in the complex plane

We find the complex number u — v by thinking of the operation in the following
way:
u—v=u+(-v)

Where the expression —v simply represents the original v arrow with its direction
reversed. So we reverse the direction of v’s arrow, and add it to u in the usual man-
ner. Also note that the position of u — v will not be the same as that of v —u, in the
same way that, for two real numbers a and b, it’s not usually true that a—b = b —a.

One interesting thing about the complex number v — v, that we produces was that
it lay almost horizontally. This indicates that the imaginary component of u — v,
Im(u — v), was not very large. This leads to a useful observation: when a com-
plex number is purely real, it will lie on the real axis. Similarly, when a horizontal
number is purely imaginary, it will lie on the imaginary axis.
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Im A

z=-41 y

Figure 7: A purely real (z = 5) and purely imaginary (z = —4i) complex number

Sample problems
1. Plot the following complex numbers on an argand diagram:
(a) z=3—1
(b) z=(2+3i) — (1 —1)

2. Consider vectors u = 1427 and v = —2+4 3i. On an Argand diagram, plot the
complex numbers of u —v and v —u. What is the angle between these vectors?

What can you deduce from this about the angle between complex numbers z
and —z7

Solutions

1. (a) The positions for (a) and (b) are shown below:
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2. The angle between these vectors is exactly 180°. We can further observe that
u—v=—(v—u)

to see that for some complex number z, the vectors of z and —z will be
separated by 180°. This property holds for all vectors. You may wish to check
it using further examples (for instance, positive and negative real numbers).

Conversions to polar and rectangular forms

In this section, we wave a fond - but temporary -farewell to the rectangular form of
complex numbers we’'ve grown accustomed to. You'll know by now that a complex
number in rectangular form is defined as some z such that z = a + bi. We've also
seen that rectangular form is useful in some situations, but it also complicates things
unnecessarily in other, perhaps a little like owning a car in Wellington. For instance,
the expression

(a + bi)'°

would be lengthy and tedious to compute in rectangular form. We find the same
theme for numerous other expressions of complex numbers. Thankfully, there is
an alternative to the rectangular form, and it’s called the polar form of a complex
number. We define some z in polar form to be

z =r(cosf +isinf)
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where r represents the modulus of a complex number, |z|, the length of its vector,
and 6 represents the argument, arg(z) the angle its vector makes with the positive
part of the real axis. These baffling terms will be explained shortly.

Let’s start by visualising these new ideas on the Argand diagrams of the previous
section. Suppose we have an arbitrary complex number that’s defined in rectangular
form as

z=a-+bi
Im A
a+ bi
|
|
|
|
[ I
r I
L | b
|
|
[ |
9 |
> Re
a

Figure 8: The polar form of a + bi

We can see more clearly now what the symbols r and 6 geometrically represent.
r, the modulus of z, is simply the length of the vector joining the origin and the
position of z. So long as we know the real and imaginary components of z, we can
easily find r through the Pythagorean Theorem:

a2+ =r=r=+va+0?

It is similarly easy to determine the value of €, the argument of z. For this we use
trigonometry, yet another gem of the Level One curriculum. When z lies within the
first quadrant (has a positive value for a and for b) it is particularly easy to find the
argument. We observe that

tan(f) = b = 0 =tan"! <b>

a a
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Generally, the argument can be specified in degrees, or in radians. In fact, in a
moment of unusual generosity, NCEA will frequently permit you to use either. We
will use radians for the rest of this guide, since they are generally more convenient.
Let’s do away with the theory and jump into an example. Our goal at this stage,
remember, is simply to convert a complex number from rectangular form into polar
form. We’ll select the following complex number:

z2=2-31

Though not entirely necessary, it’s very helpful is we can visualise this complex
number on an Argand diagram. This will prevent careless mistakes from occurring,
especially when it comes to determining the argument of z, as we’ll soon see.

Im A

o
T

-2+ 31

[
T

Figure 9: z = —2 + 3i plotted on an Argand diagram

We'll begin by determining the value of . The negative sign in front of the 2
will vanish during the squaring process, so we don’t need to consider it here:

r=+(-2)2+32=r=+v13

Now we need to determine the the argument of z. Recall two important facts about
arg(z): the first is that this angle begins on the positive part of the real axis, and
the second is that it increases in an anticlockwise manner from there. Imagine a
horizontal bar that pivots about the origin and seeps around the plane, the angle 6
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increasing all the way to 27 as it does.

When we apply the usual inverse tangent formula, the number we get will actu-
ally reflect the angle labelled 6> in the diagram. Let’s find it nonetheless:

0 = tan~! (_32) =60=-0098

Sadly, it’s fairly evident that this angle is not arg(z). This presents a real problem.
However, observe that z lies in the second quadrant of the complex plane. When
this is the case we must add 7 radians to calculated angle in order to find the true
value of arg(z). Similar rules apply for the third quadrant:

Im

z=-a + bi: i z=a + bi:

arg(z) =0 +x | arg(z) =60

L L L L ; i l) 4\ 7\ ;e
z=-a- bi: | z=a-bi:

arg(z) =0-n arg(z) =0

Figure 10: Rules for calculating arg(z) in different quadrants

So, according to this diagram we add 7 to our calculated angle and find that

0=—-098+7=0=22

Now that we’ve obtained correct values for r and for 8, so we can insert these into
the polar formula. That formula, you will recall, is

z=r(cosf + isinh)

So we find that

z =13 (cos2.2 +isin2.2)

34



You can confirm this is correct by expanding through the brackets. Writing out
complex numbers in polar form like this is quite cumbersome. Thankfully, mathe-
maticians are an especially lazy bunch, and so we get around this tedium by com-
pressing “cosf + isinf” into “cis (6)”.
number in the form

Hence we could also express our complex

z =+/13cis (2.2)

So, with the exception of peculiar arg(z) values, converting from rectangular to polar
form is mostly straightforward. It is even easier to move in the reverse direction.

For instance, suppose that
LT
z=2cis | =

Recalling that this is equivalent to the expression

9 7r+. .
z=2/(cos— +isin—
2 2

We can simply expand this expression and compute on our calculator (being careful
that we are working in radians mode), so that:

™ ™
:2 —_— 2 1 -
Z (COS 2> + 21 <sm 2)

=2(0) +2i (1)
=2i

So if arg(z) = § then it is true that Re(z) = 0. In other words, this argument gives

a complex number that is purely imaginary. In fact, it is true that:
T . " . .
0= 5 = 7 is positive and imaginary
0 = w = z is negative and real
3 . . . .
0= > = z is negative and imaginary
0 = 2w = z is positive and real

You should confirm these statements by sketching quickly these four types of com-
plex number on an Argand diagram and confirming the values for arg(z).
Sample problems

1. Determine the polar form of the following complex numbers. Use the general
formula of z = rcis (0)

(a) z=—-1—4i
(b) z=+3
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z=—22

2. Determine the rectangular form of the following complex numbers:

(a)
(b)

z = 2cis (%)

_ : 3
z = 14cis (7”)

Solutions

1.

(a)

Let’s first determine the value of r for this complex number:

VTR
— VT (AP
_VTB

Now we need to find 6. Observe that z lies in the third quadrant of the
complex plane. So we will need to subtract 7 radians from our calculated
angle. This shouldn’t worry you, it’s a very mechanical process. So:

0 =tan~! <_4>
-1

=13

Hence the correct value for arg(z) will be # — 7 which is —1.8. So alto-
gether we see that

z=/15cis (—1.8)

This complex number is particularly quick to convert into polar form.
Recall that when z is a positive, real number, then it is also true that
arg(z) = 2m. All that remains is to determine the modulus of z, which
is simply V3. So we see that

z = /3cis (27)
Now we have a z which is imaginary and negative. We know from earlier

that, in this situation, arg(z) = 37“ Similarly to the last question, we
don’t need to actually calculate the modulus, we simply observe that

r =2, and so
3w
z c1s<2>
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2. (a) We see that
=2 — 4 isin —
z cos o +isin 7

() ()
=V2+V2i

(b) We see that
z=14 <005327r —i—isin?’;)
=2(0) +2i(-1)
= —14s

Operations in polar form and de Moivre’s Theorem

One of the key motivations for working in polar form is that many computations
that are simply exhausting in rectangular form become blissfully easy in polar form.
Otherwise the polar form probably wouldn’t be worth teaching. We began the
previous section with the expression

(a+ bi)'°

which would be nightmarish to simplify in rectangular form. However, it would
be a breeze to work out if we were working in polar form. Let’s think about how
multiplication of complex numbers works in polar form. Consider complex numbers
u and v defined as

u=rycis(61) and v = rycis(62)

It is a fact that their product, u x v will given by
U X V = rirycis (01 + 92)

Hence when we multiply two complex numbers in polar form we must use the product
of the moduli and the sum of their arguments. For instance, suppose we assign some
values to u and v so that

u = 2cis <Z> and v = V3 cis (if)

then we would compute u x v in the following way:

T  3m
pr— 2 ) 1 -
U X v (xx/g 01s<4+4>

= 2v/3cis ()
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We could confirm this through an equivalent multiplication of u and v in rectangular
form. Values for u, v and uv are illustrated on an Argand diagram below:

Im A

o
T

¥
T

Figure 11: The product uv on a Argand diagram

So, in many cases, multiplication in polar form will create a new complex number
whose argument and modulus are both larger than either of the previous complex
numbers. We generally see the opposite occurring when one complex number is
divided by another. Suppose again that

u=rycis(61) and v = rycis(62)

It is similarly true that

u T
- = 71 cis ((91 — 92)
v (]

Let’s assign the same values for v and v. Then we would now find that
U 2 . (m 3w
—=|—)cis|-——
v V3 4 4
2

which is equivalent to



of course. The process of computing a power of a complex number in polar form
follows naturally from the rules of multiplication. For instance, suppose that

z =rcis(0)
then we find that

22 = (rxr)cis(0 +6)
= 72 cis (26)

In other words, we raise the modulus of z to the power, but multiply the argument
of z by the power! So, in the case of u = 2cis (%) we see that:

= dcis | =
C1S (2)

These ideas about powers of complex numbers can be easily generalised into a con-
venient formula. In this case, we’re raising some complex number z to the power of
n. We can observe that

2" =r"cis (nh)

The process of deriving that generalisation was relatively intuitive. We would like
to find an equivalent general expression for what happens when we take the nth
root of a complex number, {/z. This is more difficult, but also happens to be more
enjoyable. Let’s first look at the square root of an ordinary complex number in polar
form. We’ll think of one right now:

s
z CIS<4>

It’s not taxing to find the square root of this complex number: after all, if we know
how the process for squaring a complex number in polar form works, then we should
be able to reverse the process. So, suppose that

2 . Tl
=5 -
z = ClS<4>

72 cis (20) = 5cis <Z>

then it’s similarly true that
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It’s clear from this statement that the only possible value of r is » = /5. But what
about the possible values of 7 You may be tempted to guess that the only value of
0 that will satisfy the equation

cos (20) = cos <Z> and sin (26) = sin (Z)

will be § = $. In fact, there will be a second value, which will be

o s n 2r\ 9w
S \8 2/ 8
You can confirm this easily with a calculator set in radians mode. So it seems that
there are actually two different square roots of z.We’ll refer to them as

21 = V5 cis <78T> andzy = V5 cis <9§>

Let’s examine them in the complex plane.

Im A

Z;

Figure 12: The two square roots of z = 5cis (%)

These two square roots are separated by an angle of exactly m radians, or 180°.
It also happens that 27” = 7 radians, or 180°. This is not a coincidence! Any time

we raise some complex number to the power of n, we find that there are exactly n
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roots, all spaced around the complex plane by an angle of 27” radians. This means
that there will be n solutions to the problem z", which will be given by:

0
21 = {/rcis <)

n

0 2
29 = {/rcis <n+7r)

n
0 2
z3 = rcis <+2>< W)
n n
all the way to...

2n = (L/Fcis<0+(n—1)><27r>
n

n

This is known as the “roots of unity”, and it is a consequence of the influential
de Moivre’s Theorem. Applying de Moivre’s theorem is never overly difficult. For

instance, suppose that
3 (T
z° =8cis | =

It’s immediately clear that there will be three solutions to this problem (i.e. three
cube roots of z). They will share the same value of r, but will have different
arguments spaced around the Argand diagram. We can immediately see that

P =8=r=2

Now we need to find the value of 8 for each of the three cube roots. Finding the
first is always easy. We can observe that

T T
30=—-=0=—
2 1T 6

The remaining arguments can be found by adding %” (the second root) and then
2 X 2% (the third root) to the first argument, so the three roots will be

z1 = 2cis <7T>
6
. [ om
29 = 2cis <6)
9
z3 = 2cis <67T>

If we drawn these three roots on an Argand diagram, predictably, they come out
evenly spaced. The rules of evenly spaced roots can always be applied, though it’s
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unlikely that in your exam you will be asked to find anything more strenuous than
the fifth or sixth roots of a complex number z.

Im A

o
T

Zo

Z3

Figure 13: The three cube roots of z = 8 cis (%)

Sample problems

1. Suppose that v = 4cis (%) and v = v/2cis (%’T) Evaluate:

(a)

u X v
(b) .
(©
u3

2. Suppose we know that for some complex number z and some real number n,
it’s true that 23 = n. Determine the values of z using de Moivre’s Theorem.

3. Using polar co-ordinates and de Moivre’s theorem, evaluate

Vi
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Then, convert your solutions into rectangular form. Hint: think of ¢ as a
complex number and try evaluating it in polar form.

Solutions

1. (a) We recall that, when multiplying two complex numbers in polar form,
it is necessary to take the product of the moduli and the sum of the
arguments. Hence

2
uxv:<4><\f2)cis<g+;>

= 4v/2cis (5(:)

(b) This is another straightforward operation in polar form. We now find the
quotient of the moduli and the difference of the arguments. Hence:

()= (-5)
4 T
L (D)
4

The expression 5 may be simplified as 3%, but it’s not really necessary.

(c) Now we are raising the argument the power of 3, and multiplying the
argument by 3. Once again, there’s nothing overly difficult to this:

ud = (4)° cis (3 x g)

0
=64dcis | =
cis <2>

2. Our first task here is to represent 23, which is itself simply another complex

number, in polar form. As ever, we find an Argand diagram enormously
helpful:
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Im A

Figure 14: 2> represented in the complex plane

So, since it is purely real, we would find that
r:‘z3‘ =VnZ=n

and, similarly, that

0
0 = arg(z®) = tan™! <1> =27
Hence, as a complex number in polar form, we can define z as:
z = ncis (27)

Now that we’ve expressed 23 in polar form, we can determine its roots using
de Moivre’s Theorem. There will be roots of z3. The first will be given by

2w
_ (3 o
21 = (\/ﬁ)as( 3)
The two subsequent roots will both be separated by a distance of %” radians
in the complex plane. So we find that
4

20— () cis <3>
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and
6m

23 = (V/n)cis [ —
o= (v ais ()
the argument of z3 is, of course, equivalent to 27, so we may prefer to express
it in that form.

. This problem seems slightly more difficult, but so long as we approach it
sensibly, we shouldn’t find it too problematic. We want to begin by converting
1 into polar form. That’s not difficult. We see that

r=Ji|=1

and that
T

0=3

You may wish to confirm these by representing z = ¢ on an Argand diagram.
Now we observe that
2 | <7T-)
z"=1cis| =
2

So, we’re looking for the two square roots of our z. We apply de Moivre’s
theorem in the usual way. The two roots will, of course, be separated by an
angle of 7 radians. Hence:
— 3 T
z1 = cis <4>

. 5
29 = CIS| —
2 4

Computing these roots in rectangular form, we see that for z;:

Z1 = COS 1 7 S1n 1

1

1 .
NCRNGA

and

and for zs:

These are very interesting results! They can also be found working in rectan-
gular form, which is an interesting exercise for you to try.
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Algebra of complex numbers in polar form

This section deals with the miscellaneous, mostly higher-level problems about polar
form. As usually happens, there’s no clear theme or way to predict exactly what you
might be asked during an exam. As we’ll see, interestingly enough, these problems
don’t actually often require us to work in polar form! Instead, they tend just to
borrow the polar ideas of the modulus and argument of a complex number. We’ll
begin by examining the properties of the argument of a complex number.

A number of important facts about the argument, 6, will already be apparent to
you (and can all be confirmed by using an Argand diagram), for instance, we know
s

that when arg(z) = 7, z must be purely real, and also positive. Similarly, when

arg(z) = m, we see that z is purely imaginary, and negative.
What about other values of 6, though? One important, helpful idea is that:

m
arg(z) = 5= Re(z) = Im(2)

We can easily prove this. Let’s consider some arbitrary complex number z = a + bi

(notice we're working in rectangular form again). Now suppose the real and complex

components are equal, so that z = a+ai. We can find arg(z) in the traditional way,

using trigonometry:

™

4

There we have it. Some examples of such complex numbers might be z = 2 4 2¢, or
z = —3 — 3i. This can all be confirmed if so so desire, using trig once more. But for
now, let’s move on to some applications of this powerful fact. Suppose we have the
following problem:

Two complex numbers of the form v = 1+ 3¢ and v = —2 4 x¢ have the
property that
T
arg (u x v) = 1

Determine the value of z.

You might expect that this question would require that we work in polar form for
some of the time, but in fact it’s not as complicated as that: the fact that the
s

arg(u x v) = 7§ is simply a kind of code for the fact that

Re(uv) = Im(uv) (2)
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So we can consider the complex product uv as a single complex number, like we
would for an ordinary z. This fact will use useful in a moment. For now, let’s try
and compute u X v, working in rectangular form. It’s been a while since we had to
do this. ..

uxv=(143i)(—2+ xi)
= —2+ i — 6i + 3wi?
=—-2-3x+zxi—6¢
=(—2-3z)+ (x —6)i

Okay, so we've gone through the usual, somewhat tedious steps, and found a single
complex number, which is certainly good news. If you recall, it’s usually a very good
idea to group the terms of a complex number so that it’s in the form z = a + bi. So
here we can see that, for the complex number uv:

Re(uv) = =2 — 3z and Im(uwv) =2z —6

This is shaping up nicely. We have two linear equations, with a single unknown, =z,
in each of them. We recall from equation (2) that Re(uv) = Im(uv), and so we see
that

—2—-3x=x—-6

This is a straightforward equation that we can easily solve for . We see that
2r=4=2=2

That was a spot of fun, then. Now let’s move on to something else. Let’s suppose
that we have a complex number z = a + bi, and that we allow the actual values of
a and b to vary so that |z| = 4.

You'll recall that the expression |z| is also called the modulus of z, and it repre-
sents the length, r, of the vector that joins z and the point (0,0) on the complex
plane. So, we're essentially allowing our complex number to take on whatever values
it pleases, but we’re also applying the condition that r is always equal to 4. If we
draw an arbitrary z with|z| = 4, and allow z to vary, we find that it actually traces
a circle in the complex plane:
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Figure 15: The locus traced out by |z| = 4 on an Argand diagram

What is essentially happening here is that a bar of length 4 is sweeping in all
directions around the origin. It’s not too hard to imagine how this might form a
circle. It’s also not difficult to establish mathematically of what is occurring here.
We’ll use rectangular form to do this. Suppose that z = x + iy, for an arbitrary
complex number. We have imposed the condition that |z| = 4. We can use the
Pythagorean Theorem to capture this idea as an equation.

o = VaT

And hence

Va2 +y2=4=22+4*=16
We know from our study of loci and graphs that a circle is any locus of the form

2?4y =12

and so it’s clear that this equation represents a circle centered at (0,0) and of radius
4. There is thus a strong relationship between the modulus of a complex number
and the geometric locus that is traced in the complex plane. For you, this really
just means another round of problems to be solved. They’re never too hard, though.
For instance:
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Suppose we define a complex number z in rectangular form such that
z = x + 1y. Further suppose that

2] = 2|z — 2| (3)
Describe fully the locus of points that this equation represents.

Despite requiring more longwinded algebraic manipulation on our part, this question
is really no more difficult that the simpler one that came before it. The enormous
hint comes in the first line of the question, which lets us know that we should begin
by expressing z (and |z| of course) in rectangular form. Let’s start with what we
know, which is that

2] = 2® + ¢
for a generically defined complex number. The way forward is, thankfully, clear
from here: we simply slide this expression in for|z| and |z — 2| in equation (3). We
first observe that

|2 = 2% + 4
and, similarly, that

|z =2 = (z - 2)" +¢°

Now, heading back to (3), we can form a new equation, which is
22+ =2 [($—2)2+y2}

Now it’s a matter toughing it out, and wading through this somewhat dense algebra.
We expand all the terms:

m2+y2:2[x2—4x+4+y2}
=222 — 8z + 8 + 297

We can see that we’re heading towards the equation of a circle, or possibly an
ellipse. So what we would like is to gather the x and y terms on one side, and any
real numbers on the other. So, rearranging, we find that

2? — 8z +y* = -8

This equation, in one sense, is the correct answer. However, until it is factorised,
we will be unable to properly describe the locus it forms. For that, we’ll need to use
the method of completing the square (which is always useful at any level) z’s:

(x—4)2—-164y*= -8
Now we transfer the —16 term to the RHS:
(x—4) +y* =8

That’s a significant improvement. We can immediately interpret this as the locus
of a circle, centered at (4,0) and of radius v/8. This is literally all that we would
need to add to the working to get full marks in this situation.
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Sample problems

1. Suppose that for some complex number z = x + iy it is true that

arg(z—|-3—z'):%

By solving for z in rectangular form, give a geometric interpretation of the
locus of z.

2. Describe fully the locus of points representing z such that

|z +5— 3i| = 36

3. Describe fully the locus of points representing z such that

|z — 2> = 64

Solutions

1. We recall that when arg(z) = 7 it is similarly true that

Re(z) = Im(z2)

We will use this fact to help us move forward with this problem. We first wish
to express distinctly the real and the imaginary component of z + 3 —i. We
first consider z in rectangular form, so that:

z4+3—i=z+iy+3—i=(x+3)+ (y—1)i
Now we equate the real and imaginary parts:
r+3=y—1

This is essentially the correct solution, but in order to give it a meaningful
geometric interpretation, it’s necessary to solve for y as we’ve done historically
for straight lines, so we see that

y=x+4

and so this clearly represents a straight line with a gradient of 1 and a y-
intercept of 4.

2. Now we need to go from working with the argument of a complex number to
considering its modulus. We should be familiar with how this process might
go by now.Let’s first express the new complex number in rectangular form. If
z = = + iy then it’s clear that

2+5—3i=(x+5)+ (y—3)
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Now we’ll determine the modulus of this complex number, which is again
straightforward:

|2 +5—3i| =[(z+5) + (y — 3)i
=(z+5)72+(y—3)°
This is shaping up well. It follows from the original problem that
(x+5)*+ (y—3)* =36

and hence this clearly represents a circle of radius 6 that is centered at (-5, 3).
This concludes the solution.

3. We’ve not specifically encountered this type of problem before, but it’s highly
solvable nonetheless. We begin, as ever, by considering the “new” complex
number formed by the expression z — 2, which is simply (z — 2) + iy. Now we
substitute this into the original equation:

‘(:1:—2)+iy‘3:64:> [(x—2)2—|—y2 3:64

We now take the cube root of both sides. There is only a single value of /64,
and it is 4. Hence

(z—2)*+y° =4
and so we see that this set of points represents another circle, which on this
occasion has a radius of 4, and is centered at (2,0).

With that we conclude Section Two of this Guide. The key skills we
dearly hope you’ve mastered by now are:

e Argand diagrams: representing complex numbers as points and vectors in the
complex plane, addition and subtraction of complex numbers using vector
methods.

e Polar form of complex numbers: identifying the connection between polar
form and the geometric properties of the Argand diagram, calculating the
modulus and argument of a complex number, correcting the argument for
complex numbers in the second and third quadrants of the complex plane,
and conversions from polar to rectangular form.

e Operations in polar form: multiplication and division of complex numbers in
polar form, raising complex numbers to powers in polar form, determining the
roots of unity for complex numbers using de Moivre’s theorem.

e Equations of complex numbers in polar form: using facts about the argument
to solve simple problems, understanding the geometric relationship between
the modulus of a complex number and the locus of a shape in the complex
plane
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3 Polynomial equations

FEquations, both linear and non-linear, have been examined, inspected, prodded, and
otherwise pored over for most of your recent education in mathematics. You perhaps
never wish to regard another dubious quadratic for some time. In that particular
instance, we’re forced to present some unfortunate news. At the same time, however,
we’ll see a number of elegant theorems that make working with quadratics and cubics
significantly less stressful.

Roots of quadratic equations

Polynomials are common branches of equations which include the equations for
straight lines, parabolas, cubics, and a host more. A polynomial is a function of the
form

f(z) = apz™ + 12"+ .. a1z + ao

in which a,, . ..ap € R, which is simply another way of expressing that the coefficients
of the x terms are some real numbers. We say that the degree of a polynomial is
the highest power of x. So, in this general form here, the polynomial is of degree n.
Two of the more common kinds of polynomials we come across in this standard are

e quadratics, polynomials of degree 2, which are of the form
f(z) = az® 4 bz + ¢
e cubics, polynomials of degree 3, which are of the form
f(z)=az®+ bz’ +cx+d

Let’s first spend a small amount of time with quadratics, which are manageable to
work with then cubics for obvious reasons. It’s an elementary fact that all quadratics
can be expressed in a factorised form, which entails two sets of brackets that, when
expanded, will generate the polynomial for us. Sadly, as you’ll all know by now,
some quadratics factorise infinitely more easily than others. For instance, suppose
f(x) = 2% + 52 + 6. It’s not difficult to work out that

2 4+324+6< (z+2)(x+3)

where (x 4 2) and (x + 3) are “factors” of the quadratic equation. Factorising is of
much more use to us than simply giving an alternative form of an equation: when
we factor a quadratic, we immediately see its roots. These roots are another way of
saying the z-intercepts of the same parabola. Here, for instance, it is clear that the
equation

2%+ 5z +6
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has roots of x = —2 and = —3. This is highly useful information. Let’s now
suppose that we know that the roots of a quadratic equation are two real numbers
a and b. In other words, we are able to express the quadratic in the factored form

f(z) = (z —a)(z—D)

However, we may not immediately be certain what the ezpanded form of the quadratic
will be. So, what we would like is some direct relationship between the roots of this
quadratic - the real numbers a and b - and the coefficients of its expanded form.
We can determine this relationship through a straightforward expansion of brackets.
We start out with the factorised form of f(x) that you've already seen:

f(x) = (x—a)(z—b)
=a2? —ax —br+ab
Then, collecting terms, we find that
(z —a)(x —b) =2 — (a+b)x +ab (4)

Recall that the real numbers a and b were the roots of that quadratic equation. So
we can see that the coefficient of the first term, the 22, won’t depend on the value
of a and b. The coefficient of the x term, however, will depend on the sum of the
roots. Then, the coefficient of the final term without any z’s will be depend on the
product of the roots.

These relationship can be better expressed in words. When the roots of a quadratic
are a and b then we observe that

f(z) = 2* — (sum of roots)z + (product of roots)

Pay particular attention to the negative sign in the middle term. You may have
thought that all this was essentially common knowledge, and on some level it is.
All the same, however, this simple little formula can prove quite useful to us. For
instance, suppose we know that a quadratic f(z) has roots of 2 + V3 and 2 — /3.
In other words, f(z) can be expressed in the form

@) = (v 2+ V3)) (z— (2-V3))

Now suppose we're asked, as we inevitably will be, to find the expanded form of the
equation. We can clearly see that the most obvious method- to expand the terms
by hand - would require a fair amount of utterly tedious arithmetic. Naturally, we
wish to minimise our own workload. So, an alternative method would be to think
of 2+ /3 as a and 2 — /3 as b from our earlier equation (4). We can easily work
out the sum and product of these roots:

Sum of the roots = 2 + V3 +2 — V3 =4
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Product of the roots = (2 +v3)(2-V3)=4-3=1

The astute readers among you will notice that these calculations computed particu-
larly easily because those roots were, in fact, conjugate surds. So now, remembering
that

f(z) = * — (sum of roots)z + (product of roots)

we can write that:
flx)=2? — 4o +1

You might wish to confirm this through the quadratic formula, or completing the
square (naturally, this quadratic won’t factorise pleasantly). So the power of equa-
tion (4) is clearly not to be laughed at. Let’s look at yet another of its uses. Consider
the equation

f(z) =2®+ 7z 16

We wish to find the quadratic equation whose roots are twice those of our f(x) here.
How might we approach this? One method might be to use the quadratic formula.
However, this process would be tiresome, and would doubtless involve messy values.
On the other hand, if we consider the sum and product of the roots, the question
become laughably easy.

First, let’s assign symbols a and b, as we’ve grown accustomed to, to represent
the roots of f(x). Keep in mind that we aren’t actually interested in what those
numbers are! Now, recalling that

f(z) = 2% — (sum of roots)z + (product of roots)

we can say that
a+b=-7

and, similarly, that
ab = -16

How does this help us? We have been asked to find a new quadratic, which we’ll call
g(x), whose roots are twice those of f(x). So, we can think of the new quadratic’s
roots as being 2a and 2b. In other words

g(x) = 2* — (2a + 2b) + 4ab

We can now observe that
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Similarly, we can easily determine the product of g(z)’s roots:
(2a) x (2b) = 4ab
— 4(—16)
— —64

Now we can substitute this sum and product into our equation for g(z) and find
that

g(xz) =22 — (—14)z — 64
= 2%+ 14z — 64

The final thing we want to look at in this section is the discriminant of a quadratic
equation. We have actually already encountered discriminants back in the first
section on complex numbers, so we're familiar with it’s main uses at this point.
Now we’ll be looking at using the discriminant to solve for unknowns. It’s a fact
that in an equation of the form

f(z) = az® 4 bz + ¢
the discriminant of the equation is given by the expression
A =b* — dac

The value of A determines the so-called nature of the roots a quadratic. We observe
that:

o If A > 0 then p(x) has two real solutions
o If A =0 then p(x) has one real solution

o If A <0 then p(x) has no real solutions

We can use these facts to easily solve for unknowns in quadratics, so long as we are
told the nature of the roots. For instance, consider the following problem:

Determine the value of p if the equation
f(z) =22+ pz+p
has no real solutions.

The key idea here is that a quadratic with no real solutions has complex roots,
and a discriminant that is negative. We observe that, in this equation, a = 2, and
b = c = p. Now we can use substitute these into the expression for the discriminant:

A = b% — 4ac
=p* —4(2)(p)
=p’ —8p
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Now we observe that, for an equation of no real solutions, it must be true that
p2 —8p <0

We solve this equation for p. This involves a simple factorisation. The less than sign
takes the place of an itequals sign, and simply lingers in the middle of the equation:

p(p—28) <0

Now we need to interpret some solutions. Because of the less than sign, the so-
lutions won’t be simple real numbers like they would be with an equals sign, but
instead they’ll represent some range of values for p. This range will clearly involve
the values 0 and 8, but how do we put them together? You’re perhaps groaning.

Consider the problem in this way: at this point, we have constructed the equa-
tion for a parabola, which we will call g(z) = x? — 8z (replacing variable p with
x). What we really desire, then, is the range of = values for which this parabola
is beneath the z-axis. The parabola is orientated positively, and looks roughly like
this:

g(x) <o

Figure 16: The range of z values for which g(z) = 22 — 8z is negative

So we can clearly see that our g(z) will be negative for x values between 0 and
8. Hence the correct answer is that

f(z) = 222 + px + p has no real solutions for 0 < p < 8
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So then determining the range of values did not present much cause for concern
after all. As ever, we find a diagram make the problem significantly clearer.
Sample problems
1. A quadratic equation f(z) has roots of 4 +14v/2 and 4 —iy/2. Determine f(z).
2. A quadratic equation f(x) is of the form
flx)=a?—924+p+7

in which the roots of the equation have a difference of 3, that is, f(x) can be
expressed in factored form as

f(z)=(z—a) (x — (a—|—3))
Use this information to determine the value of p.
3. Consider the quadratic equation
f(x) =az? + bz +c
Now suppose that f(z) can be expressed in a factored form as
f(@) = alz —a)(a—p)
in which real numbers a and § are the roots of the polynomial.

(a) Using an expansion, determine the relationship between the sum and
product of roots « and /3, and the coefficients a, b and ¢ of f(z).

(b) Use this information to find the sum and product of the roots in the
equation
f(x) =22% + 62 — 4
Solutions

1. We use the traditional sum and product of the roots method in order to find
the expanded form of f(x). We observe that the sum of the roots is given by

(44iV2) + (4 —iV2) =8 +ivV2 —iV2
=8

And that the product of the roots is given similarly by

(44 iV2)(4 —iV2) = 16 — 2i?
=18

And hence we see that
f(z) =2* -8z +18
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2. You might suspect that we will use the sum and product of the roots to solve
this problem...and that is correct! We observe that the sum of the roots is
given by

a+(a+3)=2a+3

and that their product is given by
ala+3) =a® +3a

Now we see that
20+3=9=a=3

We’re in good shape to determine the value of p. Observing that
a+3a=p+7
and using the recently discovered fact that a = 3, we easily find that
32 4+3B)=p+T=>p=11
This concludes the solution.

3. (a) We'll begin with an expansion of the factored form of f(x). This is
somewhat tedious but not difficult:

f(@) = a(z — a)(z - B)
=a(z? — az — Bz + ap)
=a w2—(a+5)x+a6]
= az® — a(a+ B)z + aaf

Now we have two expanded quadratic equations that we know are equal.
We can therefore see that

az’ + bz + ¢ = ar® — a(a + Bz + aaf

For these equations to be equal, the coefficients of 22, x, and the final
real-number term must all be equal. Let’s first consider the sum of the
roots. We can see that

—ala+p)=>b

from which it clearly follows that

b
Q+B:*a (5)

Excellent. Now we’ll examine the product of the roots. We can see that

aaf =c
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and so it’s clear that

af == (6)

a
We now have correct expressions for the sum and product of the roots of
a general quadratic equation where a # 1.

(b) We apply the information of the previous question, observing that for
this f(z), a=2,b=6 and ¢ = —4. So, from (5) we observe that

Sum of roots = —— = —9 = -3
a 2
and, from (6), we observe that
C —
Product of roots = — = — = -2
a 2

Roots of cubic equations

Now that we’ve graduated from our re-visiting of quadratics we can graduate onto
something vastly more thrilling, and that’s cubics. A cubic equation is a polynomial
of degree 3. That is to say, it is some equation of the form

f(z)=az®+ bz’ +cx+d

for a,b,c,d € R and where a # 0. Hence a cubic must contain an 3 term with a
real coefficient, but could in fact include as many as four or as few as one term. The
simplest cubic is thus f(x) = 3. Visually, cubics contain both a local maximum

and local minimum value, which is impressive to behold.

One common problem associated with cubics is to determine their roots. In the
same way that all quadratics (polynomials of degree 2) will have exactly two roots,
it’s an established and well-known fact that all cubics (polynomials of degree 3) will
have exactly three roots. In fact, any polynomial of degree n will have exactly n
roots. This is called the Fundamental Theorem of Algebra. Despite being admit-
tedly quite important, all of us are testament to the fact that it’s perfectly possible
to learn a great deal of algebra without the Fundamental Theorem. The brilliant
mathematician Gauss gave the first complete proof of this theorem for his Ph.D, in
the precocious manner he was often associated with.

In the simplest of cases, we will be given one of the factors of a cubic equation
and asked to determine the remaining two. A useful method here is known as com-
paring coefficients, and it works on the principle that two polynomials are equal if
and only if the coefficients of their corresponding terms are equal. For instance, if
it’s true that

ax® +bx® 4+ cx +d =223 —42% — 1
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then it must similarly be the case that a =2, b= —4, ¢ = 0 and that d = —1. Now
let’s look at a straightforward example. Suppose we know that the cubic equation

f(z) =223 — 32 — 172 — 12

has (x 4+ 1) as one of its factors. We wish to determine the remaining roots of this
cubic, however, this can only be done by expressing it in fully factored form. So,
how do we solve this problem?

One good tactic is to consider that a cubic is essentially just the product of a
quadratic equation, and a linear equation. We already have a linear factor of this
cubic, so the remaining factor can be thought of as some quadratic g(z) such that

g(x) = az® + bz + ¢
Now we can establish that
223 — 322 — 172 — 12 = (z + 1)(az® + bz + ¢)

There are various methods that we could probably use to solve for unknowns a, b
and ¢, and they would probably all work. However, in this case, it is easiest just to
expand the RHS and compare coefficients rather than employ any algebraic tricks.
This part is a little onerous, but not really hard:
(x4 1)(az® + bz + ¢) = az® + ba® + cx + ax® + bz + ¢
=ax® +(a+b)ax® + (b+c)r+c
In fact, that expansion was particularly quick. Things are shaping up rather nicely.

You’'ll observe at this point that we have two cubic equations that, crucially, are
equal. So, we know that their equivalent coefficients are equal, too. Given that

20 — 322 — 172 — 12 = az® + (a + b)2* + (b+ )z + ¢
we can generate some linear simultaneous equations, which are
a=2 a+b=-3 b+c=-17 c=-12

It follows that from these that b = —5, which can be confirmed easily. We now see
that
223 — 327 — 172 — 12 = (z + 1)(22% — 52 — 12)

This is good. In order to find the second and third roots, we need to determine
the factors of 222 — 3z — 12. There are many methods that work here. One is the
quadratic formula. We see that

222 — 5x — 12 = (22 4 3)(x — 4)
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Hence, the three roots of the cubic are the originally given x = —1 and the newly
3

discovered x = —3 and also z = 4. The solution to this rather simple problem was
quite lengthy. You may wonder “if there is a quadratic formula for polynomials
of degree 2 then surely there is a cubic formula for polynomials of degree 37” In
fact, the answer to that question is yes, however the so called “cubic formula” is
enormously complicated to compute by hand. Interested parties will find that its
discovery, like many things in mathematics, has a less than glamorous history. So
instead of the onerous cubic formula we prefer methods such as the comparing co-

efficients we saw here.

In the f(x) equation we just encountered, all of the three roots were real numbers.
This won’t always happen, however. It’s entirely possible that a cubic equation have
a set of complex roots. Before we look at these cases, there are some important facts
to get out of the way that will make our lives easier. First, recall that we can view
a cubic as the product of a linear and a quadratic equation. In the most recent
example we saw that

223 — 32% — 172 — 12 = (z + 1)(22% — 5z — 12)
We can make some useful observations.

1. The coefficient of 22 on the LHS comes from the product of the coefficients of
the  and 2 terms on the RHS.

2. The constant term on the LHS, —12, comes from the product of the constant
terms in each set of brackets on the RHS, which here were 1 and —12.

Okay, the second idea is about the complex roots of cubics. During this standard,
100 percent of the cubic equations you will encounter will be real-valued cubics.
This is another way of expressing that in a cubic equation

f(x)=ar®+ba® +cx+d

all of the coefficients will be real numbers, and won’t contain any imaginary parts.
An important consequence of this is that, whenever a cubic (or, in fact, a polynomial
of any degree) has one complex root z, the cubic will always have a second complex
root of Z, the complex conjugate of the first.

You will recall that if we define a complex number as z = a + b then its com-
plex conjugate will similarly be Z = a — bi. Let’s take the cubic equation

flz) =23 - 1122 + 43z + ¢

and now suppose that x = 3 + 2i is one of the roots of f(x). Our goal is to deter-
mine the remaining roots of the cubic, and hence find the value of ¢, given that ¢ € R.
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In trying to solve a problem such as this one, alarm bells should immediately go off
in our minds: whenever a cubic has a complex root, then it will have to have its
conjugate as a second root. Hence, if one of the factors of f(z) is (z — (3 4 2i)) then
a second factor will be (z — (3 — 2i)). If we can find the product of these factors
(which will be a quadratic), all that will remain is some linear factor. So we observe
that

(x—(3+2i)) (x—(3—2i)) =2°— 6z +13

which we could quickly determine using the sum and product of roots for a quadratic.
Now we can quickly see that there will be a single other linear factor for the cubic.
We should equate the two, so that

23— 112% + 432 4 ¢ = (22 — 62 + 13)(x + a)

We could have also written the linear factor as (x — a), it’s really up to you. This
is essentially just a problem of comparing coefficients now. We first want to expand
the LHS:

(2% — 62 +13)(x +a) = 2° + ar® — 62° — 6ax + 132 + 13a
=23+ (a — 6)x? + (13 — 6a)x + 13a

We can now easily compare coefficients and solve for a. If
23— 112® + 43z + c = 2% + (a — 6)z + (13 — 6a)z + 13a
then we can immediately see that
a—6=—-11=a=-5

or otherwise that
13—-6a=43 = a= -5

So it’s easy to find the value of constant c:
¢=13a = 13(—5) = —65

There were two parts to this problem. The first asked us to determine the value of
¢, which we have done. The other asked for all three roots of the cubic. We can
now do this, too. We already know that two roots are 3 + 3¢ and 3 — 2¢. Our third
factor was in the form (z + a), and since we now know that a = —5, this factor can
be rewritten as (x — 5). Hence 5 is the third root.
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Sample problems
1. One of the factors of the real-valued cubic equation
f(z) =223 + Ax® —4a +3
is (2o — 1). Determine the value of A and B.

2. The real-valued cubic
f(z) =222+ Az + B

has i1/3 as one of its roots. Determine the remaining two roots and the values
of A and B.

Solutions

1. This problem is familiar territory. If we know one of the linear factors of a
cubic, then we can think of f(x) as the product of that linear factor and a
quadratic factor. Hence

203 + Az? — 4z +3 = (22 — 1)(2® + ax + b)

We knew that the coefficient of the 2 term was 1 simply because the coefficient
of the 23 term on the LHS is also 1. Now we want to expand the RHS into
some cubic equation like so:

(2z — 1)(2? + az 4+ b) = 223 + 2a2” 4+ 2bx — 2° —az — b
=22% 4+ (20 — 1)z* + (2b —a)z — b

Now we form an equality of the cubic equations:
203 + Az? —4x +3 =223 + (20 — 1)2® + (20— a)z — b
By comparing coefficients we see that
2a—1=A 2b—a=-4 —-b=3
it follows that b = —3, and therefore that a = —2 and, finally, that A = —5.

2. We solve this in a similar way to the previous question. We can immediately
see that if 14/3 is one of the roots of the cubic then it must be true that —iv/3
will be a second root. We form factors (x —iv/3) and (x + iv/3) and find their
product:

(x —iV3)(z +iV3) =22 +3
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and hence we see that

2 — 222 + Az + B = (2° + 3)(z + a)
Now we expand the LHS:

(22 +3)(x+a)=2°+az? +z + 3a

and see that
22— 202+ Az + B =2+ ax® + 3z + 3a

and hence clearly a = —2, and so A =3 and B = —6
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Factor and remainder theorems

Now we look at two important polynomial theorems, which are called the factor
theorem and the remainder theorem respectively. Despite having different names,
they’re actually rather alike. Let’s start by defining a quadratic polynomial, f(x),
as

flz)=2* -3z -10

Which is unexciting but suits our purpose here. Our aim with this function is to
determine what remainder is left when we divide it by various linear expressions.
For instance, what remainder (if any?) is generated if we evaluate

2 — 3z —10
z—1
One way of determining the remainder is to use algebraic long division. This, how-
ever, is quite a time-consuming algorithm to run by hand. A much better way is to
use the remainder theorem. Let’s first suppose that (x — a) is not a factor of f(z).
Then there will be a real-valued remainder, R, generated when we divide f(x) by
(z —a). It happens that we can also find R by computing

R = f(a) = (a)* = 3(a) — 10

So let’s assign a the value of 1, which means we wish to determine the remainder
when we evaluate the expression

2% — 3z — 10
z—1
Once again, according to the remainder theorem, the determining the remainder

through long division is equivalent to simply computing f(1), which we can easily
do ourselves:

R=f(1)
= (1)?=3(1)—10
=12

Hence we find that a the remainder from this division problem is —10. Another
interpretation of this result is that (x — 1) is not a factor of f(x). So, in its most
basic form, the remainder theorem is a simple but powerful piece of theory. It leads
to a number is interesting problems (many of which you may be asked during an
exam). For instance:

For a real valued quadratic equation f(z) = 22 + px + ¢ it is found that:

e When f(x) is divided by (z — 1) there is remainder of —4
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e When f(x) is divided by (z + 2) there is a remainder of —7
Use this information to determine the values of p and ¢

The approach here requires that we use the remainder theorem. These two pieces
of information can be interpreted directly as meaning that:

f)=1+p+q=—4 (7)

and similarly that
f(=2)=4—-2p+q=-7 (8)

We now have two equations of two unknowns that must be simultaneously solved.
Thankfully this is not particularly taxing. One method would be to multiply equa-
tion (7) by 2, and then add them together. We find that

24+ 2p+2g=-8
Now, we add this to (8), and we find that
242p+2¢+4—-2p+q=—-15=q¢q=-7
from which it follows that p = 2. So the full quadratic must have been given by
fx)=a*+22 -7

You may wish to confirm this, once again, using the remainder theorem method.
One final thing to note is that the remainder theorem can easily applied to poly-
nomials of degree three (cubics) or higher (quartics, and so on), using exactly the
same methods that we have described here.

The factor theorem follows naturally form the ideas of the remainder theorem. We
have already discussed that when a linear expression is a factor of a polynomial, the
remainder R will simply be equal to zero. Thus, the factor theorem simply expresses
the idea that

(x —a) is a factor of f(x) = f(a) =0

For instance:
Determine whether (x + 3) is a factor of 3 — 5z — 2

Answering this question is very straightforward. We simply observe that

f(=3) = (=3)° = 5(~3) -2
=27 +15-2
— —14#0
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And thus the obvious conclusion is that no, (z—3) is not a factor of f(r) = x3—5z—2.
So using the factor theorem is no more demanding that the previous remainder
theorem was. Sometimes, more interesting problems do emerge that require the
factor theorem. For instance, suppose we define a cubic equation as

f(z) = 23 + A2z® 4+ Bz — 15

Now suppose we know that the quadratic expression (22 — 4z —5) is already a factor
of f(x). How can we find the values of A and B?

This is, in fact, just the kind of problem we might previously have solved using
the method of comparing coefficients. That method is still entirely valid here, but
it’s useful if we have more than one way of approaching such a problem. Our goal
is to factorise the factor (2 — 42 —5) so that we might apply the factor theorem on
f(x). We can do this quite easily:

2 —dx —5= (- 5)(z+1)

We now can see that the linear expressions (z — 5) and (z + 1) must also be factor
of f(x). At this point we apply the factor theorem in the usual way:

F(5) =125+25A+5B —15=0

and also
f(-1)=-14A-B—-15=0

It’s important to recall that the cubing of a negative number results in another
negative number. We now, once again, are left with two simultaneous equations of
two variables, that can be solved via whatever method you desire. We eventually
find that

A=-1 and B=-17

and hence the correct cubic equation is

flz)=a® 22— 172 - 15

Sample problems

1. Determine the remainder that is produced when the cubic equation
f(z) =62 —52% —x + 14
is divided by (z + 4)
2. Show that (x — a) is a factor of

f(z) = 2% — aa® + ax — o®
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3. Suppose a cubic equation is defined to be
f(z) = 23 + Az® + Bz — 12

and that (z — 6) and (z + 1) is known to be a factor of f(z). Use the factor
theorem to determine A and B.

Solutions
1. This is straightforward. We simply wish to evaluate f(—4). We see that
f(—4) = 6(—4)> — 5(—4)* — (—4) + 14 = —446

2. We simply need to show that f(a) = 0. So we observe that

f(a) = (a)’ = a(a)® + a(a) - a’

=a®—ad+a% - d?

=0
This is all that is required.

3. We begin by observing that f(6) and f(—1) will both equal zero when evalu-
ated. So we see that

£(6) =216+ 36A 4 6B — 12 =0

and similarly that
f(-1)==-14A-B-12=0

We now, once again, find ourselves with two simultaneous equations of two
variables. These can easily be solved for A and B. We find that A = —7 and
that B = —16.

With that we conclude Section Three of this Guide. The key skills we
dearly hope you’ve mastered by now are:

e Roots of quadratic equations: determining the expanded equation of a quadratic
based upon its factorised form, solving simple problems using the sum and
product of the roots theorem, using the discriminant to solve problems of
unknowns in quadratics.

e Roots of cubic equations: using the factorised form of a cubic to solve for
unknowns, examining the relationship between the roots of a cubic and its
expanded coefficients, using complex conjugates in cubic equations.

e Factor and reminder theorems: determining remainders of polynomials with-
out algebraic long division, solving for unknowns using the remainder and
factor theorems.
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